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Abstract

Large-scale simulation datasets can be modeled as high-dimensional scalar functions defined over a discrete

sample of the domain. The goals of our proposed research are two-fold. First, we would like to provide structural

analysis of a function at multiple scales and provide insight into the relationship between the input parameters

and the output. Second, we enable exploratory analysis for users, where we help the users to differentiate fea-

tures from noise through multi-scale analysis on an interactive platform, based on domain knowledge and data

characterization. TopoXG is a software package that is designed to address these goals. The unique contribution

of TopoXG lies in exploiting the topological and geometric properties of the domain, building statistical models

based on its topological segmentations and providing interactive visual interfaces to facilitate such explorations.

We provide a user’s guide to TopoXG, by highlighting its analysis and visualization capabilities, and giving

several use cases involving datasets from nuclear reactor safety simulations.

1 Introduction

The TopoXG software package provides scientists and domain experts with an interactive analysis and visualization

environment for understanding the structures of high-dimensional scalar field data. It is provided with a host

of various analysis and visualization capabilities. This report describes each of these capabilities on a modular

basis, by explaining the underpinning theories and presenting use cases. TopoXG is designed as an integrated

infrastructure with different modules to be used in conjunction rather than a myriad of standalone components.

TopoXG segments the domain of a high-dimension function into regions of uniform gradient flow by decompos-

ing the data based on its approximate Morse-Smale complex. Points belonging to a particular segmentation have

similar geometric and topological properties, and from these we can create compact statistical summaries of each

segmentation. Such summaries are then presented to the user in an intuitive manner that highlights features of the

dataset which are otherwise hidden. In addition, the visual interfaces provided by the system are highly interactive

and tightly integrated, providing users with the ability to explore various aspects of the datasets for both analysis

and visualization purposes.

In Section 2, we review the technical background on the Morse-Smale complex and its approximation in high

dimensions; persistence simplification and visualizing high-dimensional data. We describe each analysis and visu-

alization module in Section 3 with intuitive examples. We then present the specific applications of the software in

analyzing and visualizing data from nuclear reactor safety simulations in Section 4.
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2 Preliminaries

Here we give some technical background for our work and describe how our current and future research goals are

related to the state of the art.

Morse-Smale Complex. Several topological structures have been used in practice for analyzing the structure of

a scalar function, such as Reeb graphs [38, 39], countour trees [6, 31, 12], and Morse-Smale complexes [19, 7,

24, 25]. Each of these structures provides an abstract view of the data that highlights the salient features within

the function. Algorithms exist to compute these topological structures in low dimensions [38, 31, 19, 7, 25], and

recent developments [12, 23] have enabled us to compute or approximate these structures in high dimensions.

The body of work presented here relies heavily on the structure known as the Morse-Smale complex. The Morse-

Smale complex is based on Morse theory [36, 35]. Let M be a smooth manifold embedded in R
n without boundary

and f : M → R be a smooth function with gradient ∇f . A point x ∈ M is called critical if ∇f(x) = 0, otherwise

it is regular. At any regular point x the gradient is well-defined and integrating it in both (ascending/descending)

directions traces out an integral line, which is a maximal path whose tangent vectors agree with the gradient [19].

Each integral line begins and ends at critical points of f . Therefore all regular points can trace their ascending

integral line to a local maximum. Similarly, tracing the descending integral line of a regular point will associate a

point with a local minimum. The unstable/stable manifolds (or ascending/descending manifolds) of a critical point

p are defined as all the points whose integral lines start/end at p. The set of intersections of unstable and stable

manifolds creates the Morse-Smale complex of f . Each cell (crystal) of the Morse-Smale complex is a union of

integral lines that all share the same origin and the same destination. In other words, all the points inside a single

crystal have uniform gradient flow behavior. These crystals yield a decomposition into monotonic, non-overlapping

regions of the domain. Figure 1 shows these individual partitions of a scalar function over a 2D surface.

Figure 1: From left to right: unstable manifolds, stable manifolds, Morse-Smale complex. Each partition is colored by its

corresponding gradient behavior, where points share the same color if: (Left) their ascending gradient flow end at the same

local maximum; (Middle) their descending gradient flow end at the same local minimum and (Right) their gradient flow begin

and end at the same maximum-minimum pair.

Approximating the Morse-Smale Complex in High Dimension. Suppose our input domain is a finite set of

points X in R
n rather than a smooth n-manifold. To approximate the Morse-Smale complex in high dimension,

our first task is to estimate the gradient at the input points X by employing a version of the quick shift algorithm

[44]. First we compute a neighborhood graph such as the k-nearest neighbor graph of X. At each point in X,

we choose the steepest ascending/descending edge to represent the gradient. With this gradient approximation,

we can determine the local extrema by labeling all points with no neighbors of higher values as local maximum

and all points with no neighbors of lower values as local minimum. We then label all points in X according to

the local extrema at which its ascending and descending gradients terminate. Subsequently, we collect all vertices

with the same pair of labels into crystals and add the extrema to all crystals that share the corresponding label.

These crystals then serve as an approximation of the Morse-Smale complex [23]. One of our research goals is to

understand how different neighborhood graphs (i.e. empty region graphs [8]) may impact our approximations, and

what sampling conditions we should impose on the data to guarantee the approximation quality.
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Persistence Simplification. We introduce the notion of scale for learning the structure of a function defined on a

point cloud through the concept of persistence. Persistence studies the evolution of vectors in a sequence of vector

spaces [14]. One main example of such a sequence comes from the homology groups of a sequence of sublevel

sets of a real-valued function. Homology is an easily computed topological invariant, where homology features

are components, tunnels, voids and high-dimensional “holes” of a space; a background is given in [37, 26]. Per-

sistence provides a way of ranking the significance of the topological (homological) features in the sublevel sets

of a real-valued function and is essential to achieve the robustness of our methods. The theory of persistence was

first introduced in [21, 11], but borrows from the conventional notion of the saliency of watersheds in image seg-

mentation. It has since been applied to a number of problems, including sensor networks [17], surface description

and reconstruction [9], protein shapes [18] and images analysis [10]. In visualization, it has been used to simplify

Morse-Smale complexes [7, 20, 24], Reeb graphs [16, 39] and contour trees [42, 13].

In real datasets, there is often noise which may manifest itself as small topological artifacts, which are either

spurious extrema that may not truly exist in the data or small features the user does not deem relevant. To account

for this and allow the user to select a scale (complexity level) appropriate for the specified dataset, we introduce the

notion of persistence simplification whereby less salient features are merged with neighboring, more significant

features. In the case of the Morse-Smale complex, we assign a persistence to each critical point in the complex

which, intuitively, describes the scale at which a critical point would disappear through simplification. An example

of this simplification is shown in Figure 2, where at the finest level there are four maxima in the data, but as we

increase the scale, neighboring topological features are merged where the upward gradient flow is directed to its

more salient neighboring maxima. We thus build a filtration of segmentations where Morse-Smale crystals are

merged based on the persistence value of their associated extrema.

Figure 2: Progressive simplification of the critical points of a 2D function.

Visualization in high dimensions. A common approach to visualize the high-dimensional data is based on pro-

jecting them onto one-, two- or three-dimensional subspaces and show labeled scatter plots or some interpolation

of those densities. Common projection approaches focus on linear subspaces, such as those used by PCA and pro-

jection pursuit [22]. Slight variations of these methods look at sequences of projections onto different directions or

multiple subspaces, such as Andrew’s plots [1], parallel coordinates [29] and the grand tour approach [3]. The high-

dimensional data is embedded onto the hyperbolic plane in [45], and 3D-sphere in [28]. Recently, specific tools

have been developed to facilitate interactive visualization of high-dimensional data in conjunction with nonlinear

dimensionality reduction techniques, such as VisuMap [32], VisHD [48] and Hyperbolic MDS [45]. Tools targeted

towards specific applications in high-dimensional data visualization include design galleries [34] for exploring the

parameter space of transfer functions in volume rendering, and Click and Expander [41] for identifying clusters

in gene expression data. In the machine learning community, visualization of the low-dimensional embedding is a

common strategy for quantifying the effectiveness of manifold learning approaches [5, 27, 40, 43]. Our work uses

parallel coordinate plots, and adapts several high-dimensional projection schemes, including PCA, ISOMAP[43]

and Hypervolume visualization [4]. We plan to expand our visualization capacities by designing more modules

that employ a wide variety of projection and visualization techniques in high dimensions.
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3 Analysis and Visualization Modules

Our software is an extension to HDViz [23]. We now describe each analysis and visualization module within

our integrated system that are either part of the original capabilities provided by HDViz or part of the extension.

The main modules are visual interfaces designed for analysis and visualization: topological summary, statistical

summary, parallel coordinate plots, pairwise scatter plots, inverse coordinate plots and interactive projection. We

demonstrate our infrastructure with a demo example from nuclear plan safety analysis.

3.1 Demo Example

The demo example we use is a dataset generated for the analysis of recovery from an aircraft crash into an RVACS

of a conceptual design for a sodium-cooled fast reactor [46, 47, 33]. The RVACS is a passive decay-heat removal

system that removes heat by natural circulation of air in the gap between the vessel and a duct surrounding the

vessel. With this system, the reactor decay heat is released to the atmosphere through four cooling towers [46, 47,

33]. During a simulation, the plant is operating at 100% power when an airplane crashes into the plant, destroying

three of the four towers. A recovery crew then arrives at the site and attempts to reestablish the capability of

the reactor by restoring the damaged towers one by one. An ensemble of 610 simulations has been generated, and

among which 132 cases are considered system failures when the reactor reaches a maximum temperature of 1000K

before the end of simulation. These failure cases are extracted for our analysis.

The data from these 132 simulations is visualized as a four-dimensional scalar function with the time to reach the

failure temperature being the output variable of interest. The four input parameters represent the time for the crew

to arrive at the plant (t0), and the time for them to recover the first (t1), second (t2) and third (t3) tower, respectively.

In certain cases, the third tower has not been recovered before the end of the simulation, so t3 = 0. We would like

to understand how these input variables impact system dynamics [47, 33]. Understanding the structure of such a

four-dimensional function may help domain scientists to make decisions regarding repair strategies and evacuation

plans.

3.2 Topological Summary

The visual interface designed for topological summary is inherited and extended from the capabilities provided by

HDViz. Considered as the main visual display of TopoXG, this interface summarizes each Morse-Smale crystal

into a 1D curve in high-dimensional space which is then projected into a viewable 3D space. Each curve is encased

in a transparent tube where the width of the tube represents the ”spread” of the data at a particular scale, and the

luminance of the tube encodes the density of data within each crystal. The interface encodes three steps to arrive at

a 3D representation for analysis and visualization of the d-dimensional scalar function f defined on a point cloud X

[23]: (1) Morse-Smale Approximation: Compute segmentation Xi and Yi = f(Xi) using a Morse-Smale complex

approximation of f , where
⋃

Xi = X; (2) Geometric Summaries: Construct regression curves ri as a geometric

summary of each segmentation Xi and Yi; and (3) Dimension Reduction: Embed regression curves in 2D using a

two-step dimension reduction approach. The third dimension is reserved for the output parameter. We give a high

level description of this process, for details, see [23].

Morse-Smale Approximation. We first approximate the Morse-Smale crystals in high dimension using an ap-

proximate k-nearest neighbor graph [2] and the quick shift algorithm as detailed in Section 2. However, this is only

one of the many common approximation schemes. One of the goals of this work is to understand the possibilities

for approximating these complexes and to understand the implications of those approximations.

Geometric Summaries. For each crystal of the Morse-Smale complex, a geometric summary is constructed by

an inverse regression. This yields a 1D curve in the d-dimensional domain of f . Formally, the input domain for

each crystal Ci with samples (Xi,Yi) is summarized by a parametric curve ri in R
d. Modeling the curve by the

conditional expectation ri(y) = E[X ∈ Ci|Y] yields a representation of the crystal Ci as the average of the level
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sets {x : f(x) = y, x ∈ Ci} within the partition. The conditional expectation is then estimated with locally linear

regression [15]. We refer the reader to [23] for its derivation.

Dimension Reduction. The set of regression curves can be represented by a graph embedded in R
d with each

edge corresponding to a curve and vertices corresponding to extremal points. For visualization, we embed this

graph into the plane preserving the spatial relation among extrema and the geometry of the partitions that connect

them. It is important to point out that the goal of this dimension reduction is to provide an informative illustration of

f rather than manifold learning of X. As a first attempt, we compute the projection into the plane using a three-step

approach: first, vertices are embedded using PCA or ISOMAP [43] on the corresponding point set; second, edges

are embedded individually through their first two principle components; and third, the resulting two-dimensional

curves are attached to the projected vertices through affine transformations. We plan to apply more general graph

embedding techniques to provide representations suitable for visual exploration.

Figure 3: A simple 2D function is segmented into four Morse-Smale crystals.

Visual Components of the Framework. The visual components of the above framework are shown in Figure

4 for a simple 2D function with four Morse-Smale crystals (Figure 3). Users are given the flexibility to view

the topological summary of a high-dimensional function by switching between PCA and ISOMAP projections,

and using affine transformations to manipulate the projection directly on the screen. PCA finds and projects data

into a space defined by principal components which are linearly uncorrelated directions of highest variance in the

data. The ISOMAP differs by respecting geodesics of high dimension points which sometimes can more faithfully

convey the geometry of the high-dimension manifold in lower dimensions.

In order to preserve the ”width” of a crystal at a given scale, we compute the standard deviation with respect

to each input parameter and also a single average standard deviation across all input parameters. The latter is

direction-independent and can therefore be used as a generalized width of the data at a particular output level. The

radius of the outer transparent tubes are defined by this direction-independent standard deviation. The last visual

cue is the darkness of the edge of the transparent tube. Where the sampling density is high, the outline of the tube

is drawn black and as the sampling density decreases, the luminance of this edge increases.

To enable multi-scale analysis, we use a modified version of the persistence diagram [21], referred to as the

persistence graph. This is shown as a visual component at the bottom of Figure 4. It shows the number of Morse-

Smale crystals (y-axis) as a function of scale (i.e. x-axis, persistence threshold normalized by the range of the

dataset). A selected scale is drawn with a red box and a corresponding number of Morse-Smale crystals at its

corresponding simplification level is displayed along the y-axis in red. Stable features are considered as those

that exist over a large range of scales (i.e. a sequence of persistence simplification with increasing scales), which

correspond to long horizontal lines in the persistence graph.

Figure 5 shows several examples of simple 2D surfaces represented using the techniques described in this sec-

tion. Each function has one local maximum and a single local minimum surrounded by a flat area. Using an evenly
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Figure 4: The topological summary visual interface of the simple 2D function shown in Figure 3.

sampled grid, the density of points available at each level is mapped to the color on the edge of the transparent

tubes. The widths of the tubes vary with respect to the spread of the data at each level set. Note how the sharp

spike in (a) is represented in the topological display. The steep peak covers a small area and the small width of

the transparent tube demonstrates this in the area near the maximum. (b) has a wider area surrounding the peak

and while its representing curve remains a single straight line, the tube surrounding it changes behavior to account

for the width of each level set. The plateau function in (c) even maps the discontinuity in the curve by making a

sudden jump from a low value to a high value. Note how the edge of the tube has high luminance in the middle

section denoting a lack of data used to compute this section, whereas the most densely sampled region is at the

maximum value which has a black outline.

(a) (c)(b)

Figure 5: Three simple surfaces represented using geometric summary tubes.

We demonstrate how the topological summary visual interface allows the users to explore the data at multiple

scales. We look at a dataset (initially shown in Figure 2) under several levels of persistence simplification in Figure

6. Here the leftmost image shows the full resolution of data with four local maxima, while each subsequent image

6



reduces the number of maxima by one until we are left with a single crystal describing the gradient flow from the

global minimum to the global maximum. The numbers in red shown in the persistence graphs indicate the total

number of crystals displayed, from left to right, as 8, 6, 4 and 1. Instead of giving the users a representation of

the data at a fixed scale, we provide an interactive platform to help them differentiate features from noise through

multi-scale analysis and to choose the appropriate scale based on domain knowledge and data characterization.

Figure 6: The topological summary of a simple dataset shown at various scales.

As a final example, we illustrate our analysis and visualization interface with our 4D demo example in Figure

7 under multiple scales. During the persistent simplification steps, the topology summaries consist of 3, 2 and 1
Morse-Smale crystals, respectively.

Figure 7: The topological summary of our demo dataset shown at various scales.

3.3 Statistical Summary

The visual interface shown in Figure 8 demonstrates statistical and geometric (i.e. gradient) information associated

with the selected point in the topological summary interface. Each input dimension is viewed as an inverse function

of the output parameter. In the left column of the statistical summary window, each horizontal axis describes the

range of values of each input parameter and the coordinate mean and coordinate standard deviation associated with

the selected point. The right column encodes the gradient information, that is, the change in the output with respect

to the change in each input parameter.
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Figure 8: A snapshot of the statistical summary visual interface with highlighted visual components.

3.4 Parallel Coordinate Plots

We use parallel coordinate [30] plots to illustrate the correlations among input parameters in the high dimensional

datasets. We showcase this visual interface using our demo example of a four dimensional function shown in the

left column of Figure 9. In addition to allowing visual exploration of data points associated with each Morse-Smale

crystal, we also enable exploration of data points clustered by stable manifold (union of Morse-Smale crystals

sharing the same minima) and unstable manifold (union of Morse-Smale crystals sharing the same maxima). In

the parallel coordinate plots, each dimension is plotted as a vertical axis. A single line connecting two parallel

axes represents the two adjacent dimensions of a given data point. The variations among lines connecting the four

dimensions (i.e. t0, t1, t2 and t3) indicate correlations among various dimensions of the datasets. In addition, the

mean value (from the inverse regression) of each selected crystal (or stable/unstable manifold) is mapped as a bold

line in the parallel coordinate plots, and a grey area surrounding it denotes one standard deviation off the mean.

One important question associated with parallel coordinate plots is the ordering of the input parameters, we plan

to use statistical techniques to infer the dependencies among these parameters to obtain the optimal order in the

visual layout.

3.5 Pairwise Scatter Plots

Similar to the parallel coordinate plots, we also demonstrate the 2D pairwise scatter plots for our demo example (as

shown in the right column of Figure 9), for data points associated with each Morse-Smale crystal (or stable/unstable

manifold). Here, the user is presented with a series of 2D scatter plots that display each input parameter against

every other input parameter, where the colors of points are mapped to the values of the output. The regression curve

of a selected crystal is also projected onto the scatter plot. The transparent grey tube surrounding it represents one

standard deviation. However, as dimension of the dataset increases, pairwise scatter plots will eventually become a

dense visual clutter, rendering the interface ineffective. We are currently investigating ways to reduce such a visual

clutter.
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Figure 9: Left column: Parallel coordinates plots. Right column: Pairwise scatter plots. From top to bottom: explorations of

data points associated with Morse-Smale crystals (top), stable manifold (middle) and unstable manifold (bottom).

3.6 Inverse Coordinate Plots

In the inverse coordinate plots, each input parameter is considered as a one-dimensional function of the output

variable. Again, this visual interface is shown in Figure 10 for our four-dimensional demo example, for data points

associated with selected Morse-Smale crystal in the topological summary interface (or stable/unstable manifold).

For a selected crystal, its regression curve is drawn in the inverse coordinate plots with a grey tube representing

coordinates within one standard deviation.

3.7 Interactive Projection

The interactive projection visual interface (shown in Figure 11) is similar to the topological summary, except

that instead of using computed projections into screen space, like PCA and ISOMAP, the data remains in high-

dimension and a graphical user interface is used to define how the data is projected into the screen space. We

discuss the theory behind this interface and its implementation in TopoXG.

As the number of dimensions increases for a high-dimensional function defined on the sampled point, selecting

the interesting projection dimensions while interacting with the high-dimensional function could become counter-
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Figure 10: Inverse coordinate plots. From left to right, explorations of data points associated with selected Morse-Smale

crystal, stable manifold and unstable manifold.

intuitive. We design an interactive visualization interface that provides simple and fully explanatory pictures that

give comprehensive insights into the global structure of the high-dimensional function. Based on hypervolume

visualization techniques developed in [4], our basic idea is a generalization of direct parallel projection methods.

We first create an independent viewing system that scales with the number of dimensions where the user is allowed

to manipulate how each axis is projected. We then apply these manipulations to project the geometric summaries

from the functional space to the screen space. A possible extension would be to create an automated process for

finding “ideal” projections, where a user would select multiple points that they would like to manipulate with

bounded distance metric in the projection, and the system would solve an optimization problem that produces the

desired projection. We believe such a system would help the user to obtain multiple “local” views of the function

by exploring combinations/correlations of variables in a systematic way, therefore eventually forming a “global”

view of the data [4].

To implement such a technique in TopoXG, consider a point x ∈ R
n to be projected onto R

2 using a 2 × n
matrix L. Let ei be the unit vector of the i-th dimension. Its projection onto the 2D image space is obtained by

multiplying L:

vi = Lei =

[
lx1 · · · lxn
ly1 · · · lyn

]⎡⎢⎣
ei1
...

ein

⎤
⎥⎦

Since each unit vector has only one non-zero component, this multiplication directly extracts the ith column of L.

We therefore design an interface where the user manipulates in 2D the direction and magnitude of each projected

vector vi, that is, the user decides how each unit vector is projected on to the 2D image space. The combined

projected vectors vi are then used to construct the projection matrix L.

Users are provided with a wheel of labeled axes which they can manipulate by stretching, contracting, and

rotating. The geometry of the inverse regression curves therefore is meaningfully preserved. With a single ma-

nipulated projection displayed at a time, the interactive nature of such a tool provides the user with intuition that

is otherwise lost in a PCA or ISOMAP projection. Currently this system only supports a view of the geomet-

ric summaries, but a possible extension is to create a full hypervolume visualization of the raw high-dimensional

data points as proposed in [4]. Efficiency of such a visualization system relies on a hierarchical representation of

the high-dimensional function for multi-resolution display and generalized object space splatting combined with

texture-mapped graphics hardware acceleration [4].

4 Applications in Nuclear Safety Analysis

Here we present the specific applications of TopoXG in the analysis and visualization of a 6-dimensional and a

21-dimensional datasets extracted from a VR+
2 nuclear reactor simulator. Each dataset is an ensemble of 10000

simulation trials. The output variable is the peak coolant temperature (PCT) in both cases. The domain scientists

are interested in what combination of conditions (in the form of input parameters) can cause potential reactor

failure (i.e. nuclear meltdown witnessed by PCT exceeding a threshold value).
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a

b

c

d

Figure 11: Interactive Projection Visual Interface. The data shown has a 6-dimensional input space. (a)-(b) represents the

2-step PCA topological summary detailed in section 3.2. The data is segmented into two crystals shown in (a) based on a

chosen scale in (b). (c) shows the projection of the high-dimensional inverse regression curves and their associated standard

deviation tubes, based on the mapping shown in the square in (d). In (d), each input dimension is mapped to a single green

line segment, which the user could manipulate by stretching and rotation, to emphasize or diminish the effect of a particular

dimension on the projection.

4.1 6-Dimensional Nuclear Safety Simulation Data

The 6-dimensional VR+
2 dataset contains 10000 sample points (each corresponds to a simulation run). The input

space is defined by the parameters listed below:

• P
Trip
Pump: Minimum pressure in the pump (PumpTripPre)

• τPump: Relaxation time of pump’s phase-out (PumpPow)

• Pump Stop Time: End power of the pump (PumpStopTime)

• T SCRAM
max : Maximum temperature in the system causing the SCRAM (SCRAMtemp)

• CRPend: Control rod position at the end of SCRAM (CRinject)

• τCRP: Relaxation time of the control rod system (CRtime)

The topological summary of the dataset is shown in Figure 12. The persistence graph at the bottom of Figure

12 indicates that the dataset is highly complex at the finest scale, with 775 Morse-Smale crystals. We further

simplify such a complex structure by increasing the persistence threshold and arrive at a certain simplification with

only six of the most significant (persistent) crystals. The data is characterized by a single global minimum with

high sampling density. The widths of all the crystals at the minimum is expansive compared to the widths at the

maxima. We could infer from this analysis result that most of the data points (simulations) represent lower PCTs

and the conditions to reach these lower PCTs varies widely in the domain space. On the other hand, the maximum
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PCTs are reached at more specific input ranges which is made clear through the narrow widths of the tubes (of

one standard deviation) surrounding the red maxima. Two of the crystals, a and e, have wider tubes surrounding

their local maxima, signifying that their corresponding data points occupy a larger area of the input space. The

local maxima associated with these two crystals may be worth investigating further as they can be reached within

a less-restricted range of input parameter settings.

a b c d
e

f

Figure 12: The topological summary visual interface of the VR+
2 6D dataset shown with six separate Morse-Smale crystals

that share a single, global minimum, at a certain scale.

To investigate how various input parameters vary with respect to the output, we shift our attention to other visual

interfaces for each selected Morse-Smale crystal: the inverse coordinate plots (Figure 13), the statistical summary

visual interface (Figure 14), and the parallel coordinate plots (Figure 15).

From these visual interfaces, it is evident that, among the six crystals, the only input that changes significantly

is the PumpTripPre parameter. For example, let us focus on the first vertical axes in Figure 15, which represent the

PumpTripPre parameter. Across the six crystals, the PumpTripPre parameter shows different clustering behavior

along the first vertical axes. In crystal a (top leftmost plot), PumpTripPre values are concentrated on the upper range

while in crystal f (bottom rightmost plot), their values are clustered in the lower range. From the parallel coordinate

plots, one could conclude that various levels of PumpTripPre can result in high temperatures. In addition, we

could also combine the inverse coordinate plots of all Morse-Smale crystals together into one stable manifold and

visualize the combined plot in Figure 16. We see the top image where each of the five regression curves is readily

distinguishable with respect to different ranges of values for PumpTripPre, whereas in the lower plots they vary

little toward the left and only slightly at the right.

On the other hand, parameters such as PumpPow and CRinject result in high temperatures only at specific levels.

This conclusion is based upon the tight configuration of points resulting in high PCT evidenced in Figure 16 and

it is also supported by the consistent locations of the mean values and low standard deviations of these parameters

in Figure 14.
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Figure 13: Inverse coordinate plots for the VR+
2 6D dataset. From left to right, from top to bottom, the inverse coordinate

plots for crystals a through f , respectively.

4.2 21-Dimensional Nuclear Safety Simulation Data

We perform a similar analysis on a more complicated simulation involving 21 input parameters where the output

variable is again peak coolant temperature. As stated previously, the dataset consists of 10,000 individual simula-
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Figure 14: Statistical summary visual interfaces for the VR+
2 6D dataset. They are ordered from left to right, from top to

bottom, for crystals a through f , respectively.

tions where the parameters include the parameters of the 6-dimension dataset in addition to 15 others. As shown

in the persistence graph of the topological summary visual interface (Figure 17), the dataset at its finest scale con-
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Figure 15: Parallel coordinate plots for the VR+
2 6D dataset. They are ordered from left to right, from top to bottom, for

crystals a through f , respectively.

Figure 16: VR+
2 6D dataset: Inverse coordinate plots of all Morse-Smale crystals combined (into one single stable manifold).
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sists of a large number of unstable features (732 Morse-Smale crystals in total). We then simplify such a complex

structure by increasing the persistence threshold and arrive at a relatively stable structure with five Morse-Smale

crystals.

a b c d
e

Figure 17: The topological summary interface for the VR+
2 21D dataset: at a certain scale, there are five Morse-Smale crystals

sharing one global minimum.

Based on its topological summary (Figure 17), it is clear that the overall simplified structure of the simulation

space is similar to that of the 6D dataset. That is, all Morse-Smale crystals share a single global minimum and the

data points that reside at or near such a minimum constitute a large percentage of the total sampled points. The

tubes near each maxima are relatively narrow, representing a small number of input parameter settings that result

in the production of high PCT values.

Selecting a specific crystal in the topological summary shows us where in the range space the crystal is most

heavily sampled, but this interface tells us little about how much data is associated with an entire crystal. On the

other hand, the parallel coordinate plots (Figure 18) readily demonstrate that the crystal b contains much fewer

data points than the other crystals. Furthermore, we note that each crystal targets separate ranges of values for the

Qcore parameter (12-th axe from the left) which is not clearly evident in the other visual interfaces.

In addition, again we could also combine the inverse coordinate plots of all Morse-Smale crystals together into

one stable manifold and visualize the combined plot in Figure 19. The visual interface shows that PumpPow and

CRinject remain the dominating factors in terms of reaching a high PCT, that is, only a high CRinject value and a

low PumpPow value will yield maximum PCTs for all crystals.

Finally, we can also construct the pairwise scatter plots (Figure 20). As discussed before, as the dimension of

the dataset increases, such plots eventually become a dense visual cluster, causing the interface to be ineffective.

We are investigating other ways to present these pairwise relations among input parameters, such as focused or

sub-sampled views.
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Figure 18: The parallel coordinate plots of the VR+
2 21D dataset. They are ordered from left to right, from top to bottom, for

crystals a through e.

5 Conclusions

The main purpose of this paper is to provide a user’s guide to TopoXG, a software package that is designed for

the analysis and visualization of high-dimensional scalar functions. We describe each analysis and visualization

module in the system, by explaining the theories and techniques based on a simple 4-dimensional demo example

for the analysis of recovery from an aircraft crash into an RVACS of a conceptual design for a sodium-cooled

fast reactor . We then present the specific applications of the software in two datasets, a 6-dimensional and a

21-dimensional dataset, for nuclear reactor safety analysis and visualization. We have obtained some intuitive

understanding of the structures of these high-dimensional functions, although a more comprehensive interpretation

of our results depends on extensive testing and explorations from our collaborators. We expect to work closely

with the domain scientists and obtain feedbacks from the end users regarding (a) the interpretation of the testing

datasets using our software, (b) the limitations and potential improvements of current analysis techniques, and (c)

the potential improvements of the visualization interfaces in terms of usability and interactivity.
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Figure 19: VR+
2 21D dataset: Inverse coordinates plots for all Morse-Smale crystals combined (into one stable manifold).
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